Effectiveness Of Second Chance Mating In Genetic Algorithms (Applied to
Pathfinding)

Gregory Whitman, Dr. Armstrong
GwhitmanS55@gmail.com, Piffle@cs.ship.edu

Abstract:

This paper contains information about Second
Chance Mating in genetic algorithms applied to
pathfinding and its effectiveness. The experiment
found that Second Chance Mating was statistically
significantly slower than a genetic algorithm without
Second Chance Mating implemented.

1. Introduction:

Genetic algorithms are used for special types of
problems. They are used when a problem becomes
computationally expensive and an approximate
solution can be used. A good example of a problem
that genetic algorithms could be applied to is the
Traveling Salesman Problem. Genetic algorithms
were first introduced back in the 1960s by John
Holland and were based on Darwin's Theory of
Evolution.

2. Literature Background

Below is information about genetic algorithms
and how they were implemented for pathfinding in
this experiment. Also there is information about
Second Chance Mating.

2.1 What A Genetic Algorithm Is And How They
Are Implemented:

Genetic algorithms are search algorithms that
jump around through the possible solution set of the
problem and test each solution and give it a “fitness”
which is a rating of how “good” the solution is. The
higher the fitness is the better the solution is at
solving the problem [6]. Before the genetic algorithm
can be made there must be a way of encoding the
genome. Which will be discussed later.

(1) initialise population;

(2) evaluate population;

(3) while (!stopCondition) do

(4) select the best-fit individuals for reproduction;

(5) breed new individuals through crossover and mutation operations;
(6) evaluate the individual fitness of new individuals;

(7) replace least-fit population with new individuals;

Figure 1: This is an example pseudocode for a
genetic algorithm.

2.3 Initialize Population:

The first step of a genetic algorithm is to
initialize the first population. A population is a group
of individuals which contain a random range of
possible solutions from the solution set [8]. A
population's size often depends on the type of
problem being solved. Sometimes the size of the
initial population has an effect on the accuracy and
the speed in which the genetic algorithm finds a
solution.

2.4 Evaluate Fitness/Fitness Function:

The next step of the genetic algorithm is to
evaluate the population. This is done using a fitness
function. Each individual in the population is tested
in the fitness function and assigned a fitness score.
The higher a fitness score is the better that individual
was solving the problem [4]. A fitness function is one
of the most important parts of the genetic algorithm.
If the fitness function is wrong then the genetic
algorithm will have a hard time succeeding or will
flat out fail. The fitness function is also one of the
hardest parts of a genetic algorithm because for every
problem the fitness function will be different.

2.5 Selection:

After each individual in the population has been
tested and given a fitness score. Next is selecting
individuals for mating from the population. This may
seem like a random process but it is not entirely. The
higher an individual's fitness score is, the more likely
they are to be chosen for mating. This ensures that
the better, more fit individuals pass on their better

solutions. This is modeled after Darwin's Theory in
which the fittest survive [6].

The method used for selection involves
normalizing the fitness scores of each of the
individuals. Normalizing means taking the fitness
scores and cramming them between two set values
like 0-1. Then a random individual in the population
is selected to look at their fitness score. Next a
random number between 0-1 is generated. If the
individual's fitness score from earlier is greater than
or equal to the random number then that individual is
selected for crossover. If the Individual's fitness score
is less than the randomly generated number then the
process will be repeated until an individual gets
selected. This process will repeat two times in order
to get parent A and parent B for crossover. Also the
parents can not be the same.

2.6 Crossover:

The next step is the actual mating of Parent A,
and Parent B. The method that does this is called
crossover. The crossover method just like in actual
biology takes parts of both the parents' solutions and
mixes them together in some form to create a new
individual called a child [4], [5], [7]. There are many
ways in which to cross over the two parents'
solutions. This is an example of how it is done.

Two Point Crossover:

Parent A Child A

|D|1[2 3]4[5 5|7]8[B|

PEEEEEE7EE

[s[ele]a]a]s s 75]e]

[sTefsala]z]3]s]7]5]2]

Parent B Child B

Two point mutation takes two random points in
the parents solution and mixes them together to create
the children. A good question is what to do with the
children? Since there is a way to create children using
the previous population it is time to create a new
population, and this is done by repeating the selection
and mating methods until there is a new full
population of individuals with better, more fit
solutions [4]. Ten fixed cut points were used in both
genetic algorithms for the experiment.

2.7 Mutation:

During the crossover period there is something
called mutation that takes place. Mutation just like in
real life has a random chance of occuring [7]. In
genetic algorithms, there is a small probability that at
a single point in the solution it could change. This is a
basic example of mutation.

Ex: Child before mutation 1 1111111
1 1

Mutation occurs here

Child after mutation 10111011
1 1

The bits were flipped in these locations

2.8 Generating Next Population:

After having a brand new population also known
as a new generation. This generation after crossover
and mutation will have the best traits of the old
populations solutions and variation from the parents
due to mutations. This will hopefully lead to better
and more fit individuals in this population [4].

The Fitness Function, Selection, and
Crossover/Mutation are repeated creating new
generations and eventually the genetic algorithm will
be better and more optimal solutions until eventually
little advancement is made. The fittest individuals in
that final generation are close to the optimal solution
and are considered complete.

2.9 Variables that affect a Genetic Algorithm:

Now it's time to talk about what factors go into
affecting the speed of the algorithm and how valuable
the solution it finds will be. The first variable is
Population size. The size of the population affects the
value of the final solution. If the population size is
too big the solution at the end may not be as optimal
as it could be. And if the population size is too small
there may not be enough variation meaning the
genetic algorithm will never make any progress. The
next factor is the mutation rate. Too high of a
mutation rate will cause the genetic algorithm to
converge on a less optimal solution because it will be
jumping around in the solution set too much. And too
low of a mutation rate will cause the population to
plateau and not make any improvements. Also the
method of crossover will have an effect on the
genetic algorithm [6], [7].

2.10 Genetic Algorithm applied to pathfinding:

A genetic algorithm will be used in order to find
the optimal path in a pathfinding problem. The agents
will have to travel across a 2D plane and reach a goal.
At first the agents will move around randomly. But as
generations pass the agents will start to get closer to
the goal and find a better path due to the genetic
algorithm.

2.11 Encoding of the Chromosomes:

To create the individuals for the genetic
algorithm in pathfinding the chromosomes will look
like this below.

Individual A

DNA: “16253”

Key: 1 = North 5 = Northeast
2 = East 6 = Southeast
3 = South 7 = Southwest
4 = West 8 = Northwest

Translation for solution: North, Southeast, East,
Northeast, and South

This will allow the agents to move around on the
screen by updating their (x,y) coordinates according
to the direction in the chromosome [1], [2], [3].

2.12 Fitness Function:

To calculate the fitness of the agents the genetic
algorithm will use the Manhattan distance, which is
the distance between two points.

Ex:

Individual Goal

(x,¥,) (x,5,)
Distance = |x — x| + |y, = y,]

Before reaching the goal the agent's fitness score
will be calculated as such.

Fitness = 1/((Distance * Distance) + 1)

If the agent reaches the goal the agent's fitness
score will be modified to be calculated as such.

Fitness = 1000000/(Moves * Moves) + 1

This is done so that after the goal is found the
agents will begin focusing on making the original
path found more optimal. The fitness scores of the
agents who reach the goal must be much higher than

the agents who do not reach the goal. This is because
the agents with a higher fitness will be more likely to
get selected for crossover.

2.13 The playing field:

The agents will be moving around on a 2D field
and if they touch the outer wall of the field they will
stop moving and their fitness will be calculated from
that point on.

2.14 Second Chance Mating:

Second chance mating is taking the most fit
individuals from the previous generation and saving
slots for them and directly inserting them into the
next generation. There will also be children generated
in the same method mentioned above.

3. Primary Objective:

The primary objective is to analyze the impact of
the second chance mating approach in genetic
algorithms for simple pathfinding.

Governing Propositions:
e The task will be a simple pathfinding
problem.
1.5 person weeks over 1 semester

4. Hypothesis:

H s There will be no significant difference

between second chance mating in a genetic algorithm
than without.
H o There will be a significant difference in a genetic

algorithm using second chance mating.

Why: The more fit individuals DNA from the
previous generation is not just thrown away. They
have a second chance to pass on their DNA.

5. Goal Tree:

Goal 1

Analyze the impact of
the second chance
mating approach in
genetic algorithms

Goal 1.1.1 Goal 1.2.1 Goal 1.3.1
Experiment to find Mefasure average Me;ls ure average

the best values and iness over ness over
generations without generations with

methods for the

operating pilots second chance second chance

mating mating

6. Experiment Design:

Data will be collected on the following
experiments 5% , 10%...30% carry over rates for
second chance mating. As well as data for the genetic
algorithm without second chance mating
implemented. Each experiment will be run 30 times
in order to have enough samples for statistical
analysis.

Algorithm: Genetic SCGA 5% | SCGA 10% | SCGA 15% | SCGA 20% | SCGA 25% | SCGA 30%
Algorithm

Trials: 30 30 30 30 30 30 30

Genome Length: 170 170 170 170 170 170 170

Mutation Rate: 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5%

Generations: 1000 1000 1000 1000 1000 1000 1000

7. Solution Description:

Tools: Java, Eclipse IDE
Implement a genetic algorithm using second chance
mating and evaluate its effectiveness when applied to
pathfinding.

8. Results:

GA Type vs Generations To Reach Goal
700

600

500

400

300

200

100

o
GA 5% 10% 15% 20% 25% 30%

GA Type

(===}

Generations to reachgoal

=]

Figure 2: This is the data showing the average
number of generations each experiment took to first
reach the goal.

GA Type vs Shortest Amount Of Steps
120

100

30

40

20

0
GA 5% 10% 15% 20% 25% 30%

GA Type

Amount of Steps
o
&

Figure 3: This is the data showing the average
shortest path found in each experiment.

GA Type vs Time to Complete 1000 Generations

Time to complete (sec)

d 571 1 1
a0 400 5.58 5.53 5.61 5.64
2
1
]
GA 5% 10% 15% 20% 25% 30%
GA Type

Figure 4: This is the data showing the average
time in seconds each experiment took.

9. Conclusion:

Based on the results of the statistical analysis the
genetic algorithm using second chance mating
performed worse than the genetic algorithm that did
not use second chance mating. Except for the case

where the carry over rate was 5%. There it was found
that there is no statistically significant difference.

10. Future Work:
Experiment with carry over rates less than 5%
and look to see what those results will be.

References:

[1] Adams, Chad, Hirav Parekh, and Sushil J. Louis.
“Procedural Level Design Using an Interactive
Cellular Automata Genetic Algorithm.” In
Proceedings of the Genetic and Evolutionary
Computation Conference Companion on - GECCO
'17, 85-86. Berlin, Germany: ACM Press, 2017.
https://doi.org/10.1145/3067695.3075614.

[2] Alaguna, Camilo, and Jonatan Gomez. “Maze
Benchmark for Testing Evolutionary Algorithms.” In
Proceedings of the Genetic and Evolutionary
Computation Conference Companion on - GECCO
’18, 1321-28. Kyoto, Japan: ACM Press, 2018.
https://doi.org/10.1145/3205651.3208285.

[3] Carr, Jenna. “An Introduction to Genetic
Algorithms,” n.d., 40.

[4] Castelli, Mauro, Luca Manzoni, and Leonardo
Vanneschi. “The Effect of Selection from Old
Populations in Genetic Algorithms.” In Proceedings
of the 13th Annual Conference Companion on
Genetic and Evolutionary Computation - GECCO
’]1, 161. Dublin, Ireland: ACM Press, 2011.
https://doi.org/10.1145/2001858.2001948.

[5] Giardini, Giovanni, and Tamas Kalmar-Nagy.
“Performance Metrics and Evaluation of a Path
Planner Based on Genetic Algorithms.” In
Proceedings of the 2007 Workshop on Performance
Metrics for Intelligent Systems - PerMIS 07, 84-90.
Washington, D.C.: ACM Press, 2007.
https://doi.org/10.1145/1660877.1660888.

[6] Lu, Yuxin, Yongzhong Wu, and Yongwu Zhou.
“Order Assignment and Routing for Online Food
Delivery: Two Meta-Heuristic Methods.” In
Proceedings of the 2017 International Conference on
Intelligent Systems, Metaheuristics & Swarm
Intelligence - ISMSI "17, 125-29. Hong Kong, Hong
Kong: ACM Press, 2017.
https://doi.org/10.1145/3059336.3059349.

[7] Rana, Prashant Singh, and Shivendra Pratap
Singh. “Genetic Algorithm with Mixed Crossover
Approach for Travelling Salesman Problem.” In
Proceedings of the International Conference on
Advances in Information Communication Technology
& Computing - AICTC ’16, 1-4. Bikaner, India:
ACM Press, 2016.

https://doi.org/10.1145/2 2 24.

[8] Russell and Norvig. “Artificial Intelligence A
Modern Approach.” by Peter Norvig and Stuart
Russell, 116-19, 2nd ed. Pearson Education, 1195.

https://doi.org/10.1145/3067695.3075614
https://doi.org/10.1145/3067695.3075614
https://doi.org/10.1145/3205651.3208285
https://doi.org/10.1145/3205651.3208285
https://doi.org/10.1145/2001858.2001948
https://doi.org/10.1145/2001858.2001948
https://doi.org/10.1145/1660877.1660888
https://doi.org/10.1145/1660877.1660888
https://doi.org/10.1145/3059336.3059349
https://doi.org/10.1145/3059336.3059349
https://doi.org/10.1145/2979779.2979824
https://doi.org/10.1145/2979779.2979824

