
Second Chance Mating In
Genetic Algorithms

(Applied to Pathfinding)

Gregory L Whitman
Mentor: Dr. Armstrong

Problem Description

Implement a genetic algorithm by applying it to pathfinding and test the
effectiveness of second chance mating.

Background: What is a Genetic Algorithm?
● A method for solving optimization problems by jumping around searching

through a possible solution space.

● This done by repeatedly modifying a population of individual solutions by
mating and mutation. Which will evolve the population toward more optimal
solutions. This is based off of Darwin's theory of evolution.

Background: How a Genetic Algorithm Works?
● There are 5 basic steps to a genetic algorithm.

○ Step 1: Initialize population
○ Step 2: Fitness Function
○ Step 3: Selection
○ Step 4: Crossover/Mutation
○ Step 5: Generate Next Generation/population
○ Repeat Steps 2-5

Background: Initialization
Create a population with solutions that are completely random in the solution
space.

Ex: The solution set is {a, b, c, d} and we want 5 individuals.

● Each individual is a random assortment of a, b, c, or d.
○ aabcdb
○ baaaac
○ cbabab
○ abcada
○ bacdda

Background: Fitness Function
● This is one of the most important parts of a genetic algorithm. If this is wrong

then the genetic algorithm will fail.

● The fitness function goes through the population of individual solution and
scores.

○ Higher being most fit (better solution)
○ Lower being least fit (worse solution)

● Each scoring algorithm will be different for each problem that is trying to be
solved with the genetic algorithm.

Background: Fitness Function continued...
Ex: We want to get the string ‘aaaaaa’ we will give 10 points for every correct
character in the correct location. Using our individuals from before we will score
them.

Individuals/Genome: Calculation: Fitness score:

aabcdb 20/60 .33333
baaaac 40/60 .66667
cbabab 20/60 .33333
abcada 30/60 .50
bacdda 20/60 .33333

Background: Selection
● Selection is randomly selecting 2 parents to participate in Crossover/Mating.

● But each individual solutions chance of being selected may not be equal.

● This is because their chance of being selected is based on their fitness score.
The higher it is the more likely they will be selected.

Background: Selection continued...
Continuing with our example:

Individuals: Fitness Scores: Chance of being selected:

aabcdb .33333 33.33 %
baaaac .66667 66.67 %

caaaaa .83333 83.33 % ←-----------
abcada .50 50.00 %
bacddd .16667 16.67 %

As you can see the
individual with the
highest fitness will
have the greatest
chance of being
selected to pass on
his solution/DNA

Background: Types of Selection

Accept/Reject:

● This involves normalizing the fitness values between 0-1. This is their cumulative probability.

● Generate two random number r1 and r2,

r1 being a random individuals fitness.

r2 will be a random number between 0-1.

● If r1 >= r2 then that individual will be selected.
If not then both numbers will be regenerated and compared again.

Background: Crossover/Mutation
Take the two parents we previously selected and mate them.

This involves splitting their DNA/Genome up and then recombing them to create
two new children which will be added the next generation this is known as
Crossover.

Background: Crossover continued...

Double Point Crossover:

Parent A: Child One:

Parent B: Child Two:

Background: Mutation
Now that we have created our two children from the previous step Crossover. It is
time to introduce some added genetic variation (solution variation).

This is done by looping through the individuals genome and changing that specific
value at that point to another option from the solution space.

● These are our two children Child A: Child B:
○ aabcdb Before mutation: aabcdb Before mutation: bacdda

○ bacdda After mutation: adbcdc After mutation: dabbda

Background: Filling Next Generation/Population
Now we take the two children that have been mutated and we begin to populate
the next population. We fill the entire new population we children generated from
the previous generation.

To do so we will repeat the selection and Crossover/Mutation steps until the
population is full.

This generation will be more fit and contain better solutions.

Background: Repeat!
● With the new population now we can repeat these steps.

○ Step 1: Fitness Function
○ Step 2: Selection
○ Step 3: Crossover/Mutation
○ Step 5: Generate Next Generation/population
○ Repeat Steps 1-5

● After each repetition of these steps the population will have increasingly better
solutions.

Background: Second Chance Mating
Now it’s time to talk about a variation of the genetic algorithm called second
chance mating.

In second chance mating we will save spots in the new population and fill those
saved spots with the fittest parents from the Old population.

Second Chance Mating: Continued...
Ex:

● New Population of size 10:
○ {Parent 1, Parent 2, Parent 3, Child 1, Child 2, Child 3, Child 4, Child 5, Child 6, Child 7}

The genetic algorithm will work exactly the same except for saving spots for some
fit parents. And not creating a population full of children.

Second Chance Mating: Continued...
The reason for doing this is so that way a good solution/genome won’t be
completely lost and gives the individual a second chance at passing on its
genome.

Primary Objective
The primary objective is to analyze the impact of the second chance mating
approach in genetic algorithms.

Governing Propositions:
● The task will be a simple pathfinding problem.
● Limitation: 120 person-hours over 10 weeks

Simplified Pathfinding Example

Goal

We want our genetic algorithm to find a path
from the start to the goal.Start

Initialization: Defining Our individuals
We must give our individuals 3 things to start with.

1. Fitness (how good solution is)
2. X and Y coordinates starting at the Start (position on field)
3. Genome (list of directions to travel)

Initialization: Encoding Our Individuals/Solutions
First we must figure out how we
will encode our genome and
what is means.

1 = North
2 = East
3 = South
4 = West
5 = North East
6 = South East
7 = South West
8 = North West

(X, Y)

S(3)

N(1)

E(2)W(4)

NE(5)

SE(6)SW(7)

NW(8)

Initialization: Creating Our Genome

1: North = Y+1

2: East = X+1

3: South = Y-1

4: West = X-1

This is how we will know which direction to move.

5: North East = X+1, Y+ 1

6: South East = X+1, Y-1

7: South West = X-1, Y-1

8: North West = X-1, Y+1

Initialization: Defining The Length Of Our Genome
Obviously the directions 1, 2, 3, 4, ...etc wouldn't move us very far. So in order to
fix this we make our genome length longer for instance a genome length of 170
would be 170 random integers between 1-8. (our directions)

Ex:

Genome: 623671237612376123456712376821672836481735417...etc

We can store this in an array

Initialization: Creating Our Population
Now that we have our individuals figured out we must make a population of them

This is simple we just repeat creating the individuals a set amount of times.

Ex: A population of 5 individuals with a genome length of 170 would be:

Individual 1: 12567347152347651746576512736417247682175213 etc...
Individual 2: 34856178345813457813541784535781356713542346 etc...
Individual 3: 15175487125745182754715847656754176451751541 etc...
Individual 4: 56756276417534761668765676663763566757633773 etc...
Individual 5: 12563567785235786325634223433678564368785456 etc...

Fitness Scores: Testing Our population

● Now that we have our population it's time to test them and give each
individual a fitness score.

● In order to do this we must loop through the population and at each individual
loop through their genome (set of directions)

Fitness Scores: Testing Our population continued...
At the end of each individual's genome (meaning they used all their moves). We
will calculate the distance between them and the goal.

We can do this using the distance equation:

Where the Red x1 and y1 are the Individuals coordinates.

And the Blue x2 and y2 are the goals coordinates.
Distance = |x1-x2| + |y1-y2|

Calculating the fitness:
● We will have to invert the distance because the shorter the distance to the goal the

higher their fitness score should be and vice versa.

● We will take the previously calculated distance and take them
Fitness = 1 / ((distance*distance) + 1))

● If they reach the goal they will receive a much higher fitness based off how how
many moves it took them to get there
Fitness = 100000/((moves*moves))

Selection: Normalization
Now that we have our individuals fitness scores we must use them to select
parents to partake in Crossover eventually.

In order to do this we must first normalize all of the individuals scores to the
populations cumulative probability. Which I will demonstrate.

Selection: Normalizing Fitness Scores continued...
First we must loop through our population summing their fitness scores. We will
call this fitnessSum.

Then we will loop back through the population and correct the fitness scores by
taking fitnessScore / fitnessSum.

This will force all the fitnessScores to be between 0-1 and the higher the Original
fitness score the higher probability that individual will be selected.

Selection: Picking our Parents
We need two parents for Crossover.

We will pick them by using a method called Accept / Reject.

Selection: Accept or Reject

To begin we will randomly select an
individual from the population and
get their fitness. And then will will
also generate a random number (r)
between 0-1. Which is why we
normalized everything.

If (r < individualsFitness)
Return parent

Else
Repeat

If (r) is less than the individuals fitness score
then they are selected to mate.

We do this twice for two parents

Parent A, and Parent B

Crossover:
Now that we have our two parents it's time to mate them using Crossover.

This involves taking both the parents genome and combining them to produce two
new children

Crossover: Double point mutation
Ex: Parent A : Child 1:

141 | 2442 | 343 141 | 2342 | 343

Parent B: Child 2:
124 | 2342 | 341 124 | 2442 | 341

At fixed points within the set genome copy over chunks of each Parent into the
children in the order above.

Mutation:
Now that we have our children we must mutate them to introduce variation in the
solutions.

Mutation is performed by looping through each of the children's genome. And at
each step check to see if a randomly generated number mRate is <= the mutation
Rate. And if it is then randomly chance that step to something else in the solution
space.

Mutation: Continued...
Ex: Before Mutation:

Child 1:
1 4 1 2 3 4 2 3 4 3

Child 2:
1 2 4 2 4 4 2 3 4 1

Ex: Before Mutation:

Child 1:
1 2 1 2 3 4 3 3 4 3

Child 2:
1 2 4 2 1 4 2 3 4 1

As you can see
where mutation
took place the
direction at that
current step
changed

Filling the next Generation:
Now that we created and mutated the children it is time to repeat selection and
Crossover/Mutation until the children that were created are enough to fill a new
population.

And then repeat! After each generation the populations individual solution should
get better. Closing in on an optimal solution.

What the optimal path will look like...
Which the genome if perfect
would look like this…

666666666666666666666...etc

Start
In this simple

Example this would
be the optimal

solution

Goal

Hypothesis
Second chance mating will do better than without for pathfinding.

Why: The more fit individuals DNA from the previous generation is not just
thrown away. They have a second chance to pass on their DNA.

Goal Tree

Solution Description

Tools: Java, Eclipse IDE, Processing IDE, Personal Computer

Implement a genetic algorithm using second chance mating and evaluate its
effectiveness when applied to pathfinding.

To do so:
1. Implement second chance mating
2. Remove second chance mating
3. Measure the average fitness of both the algorithms and compare

them.

Experiment Design
● Setup two different genetic algorithms. One with second chance mating and

the second without second chance mating.

● Get a baseline using the genetic algorithm without second chance mating.

● Then run multiple tests on the second chance mating genetic algorithm each
test will have a greater amount of individuals carried over from previous
generation Ex: .05%, 10%, 15%...30%

Block Design

Results

Results continued...

Results continued...

Analysis
Generations to first reach goal:

Shortest path found by algorithm:

Time to complete 1000 generations:

Conclusion
Based on the results of the experiment and statistical analysis. Second chance
mating performed worse in number of generations to first reach the goal, shortest
path found by the algorithm, and time taken to complete 1000 generations.

● Second Chance mating did not perform better than the genetic algorithm
without second chance mating.

Future Work
● Experiment with carryover values less than 5% in second chance mating

genetic algorithm

Sources
1. Adams, Chad, Hirav Parekh, and Sushil J. Louis. “Procedural Level Design Using an Interactive Cellular Automata Genetic Algorithm.” In Proceedings of the

Genetic and Evolutionary Computation Conference Companion on - GECCO ’17, 85–86. Berlin, Germany: ACM Press, 2017.
https://doi.org/10.1145/3067695.3075614.

2. Alaguna, Camilo, and Jonatan Gomez. “Maze Benchmark for Testing Evolutionary Algorithms.” In Proceedings of the Genetic and Evolutionary Computation
Conference Companion on - GECCO ’18, 1321–28. Kyoto, Japan: ACM Press, 2018. https://doi.org/10.1145/3205651.3208285.

3. Carr, Jenna. “An Introduction to Genetic Algorithms,” n.d., 40.

4. Castelli, Mauro, Luca Manzoni, and Leonardo Vanneschi. “The Effect of Selection from Old Populations in Genetic Algorithms.” In Proceedings of the 13th
Annual Conference Companion on Genetic and Evolutionary Computation - GECCO ’11, 161. Dublin, Ireland: ACM Press, 2011.
https://doi.org/10.1145/2001858.2001948.

5. Giardini, Giovanni, and Tamás Kalmár-Nagy. “Performance Metrics and Evaluation of a Path Planner Based on Genetic Algorithms.” In Proceedings of the
2007 Workshop on Performance Metrics for Intelligent Systems - PerMIS ’07, 84–90. Washington, D.C.: ACM Press, 2007.
https://doi.org/10.1145/1660877.1660888.

6. Lu, Yuxin, Yongzhong Wu, and Yongwu Zhou. “Order Assignment and Routing for Online Food Delivery: Two Meta-Heuristic Methods.” In Proceedings of
the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence - ISMSI ’17, 125–29. Hong Kong, Hong Kong: ACM Press,
2017. https://doi.org/10.1145/3059336.3059349.

7. Rana, Prashant Singh, and Shivendra Pratap Singh. “Genetic Algorithm with Mixed Crossover Approach for Travelling Salesman Problem.” In Proceedings
of the International Conference on Advances in Information Communication Technology & Computing - AICTC ’16, 1–4. Bikaner, India: ACM Press, 2016.
https://doi.org/10.1145/2979779.2979824.

8. Russell and Norvig. “Artificial Intelligence A Modern Approach.” by Peter Norvig and Stuart Russell, 116–19, 2nd ed. Pearson Education, 1195.

https://doi.org/10.1145/3067695.3075614
https://doi.org/10.1145/3067695.3075614
https://doi.org/10.1145/3205651.3208285
https://doi.org/10.1145/2001858.2001948
https://doi.org/10.1145/2001858.2001948
https://doi.org/10.1145/1660877.1660888
https://doi.org/10.1145/1660877.1660888
https://doi.org/10.1145/3059336.3059349
https://doi.org/10.1145/2979779.2979824
https://doi.org/10.1145/2979779.2979824

End
Any Questions?

Extra

Extra Continued...

Extras Continued...

Extras Continued...

Extras Continued...

Extras Continued...

Extras Continued...

Extras Continued...
Showing the shortest path found...

