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Problem Description

Implement a genetic algorithm by applying it to pathfinding and test the 
effectiveness of second chance mating.



Background: What is a Genetic Algorithm?
● A method for solving optimization problems by jumping around searching 

through a possible solution space.

● This done by repeatedly modifying a population of individual solutions by 
mating and mutation. Which will evolve the population toward more optimal 
solutions. This is based off of Darwin's theory of evolution.



Background: How a Genetic Algorithm Works?
● There are 5 basic steps to a genetic algorithm.

○ Step 1: Initialize population
○ Step 2: Fitness Function
○ Step 3: Selection
○ Step 4: Crossover/Mutation
○ Step 5: Generate Next Generation/population
○ Repeat Steps 2-5



Background: Initialization
Create a population with solutions that are completely random in the solution 
space.

Ex: The solution set is {a, b, c, d} and we want 5 individuals.

● Each individual is a random assortment of a, b, c, or d. 
○ aabcdb
○ baaaac
○ cbabab
○ abcada
○ bacdda



Background: Fitness Function
● This is one of the most important parts of a genetic algorithm. If this is wrong 

then the genetic algorithm will fail.

● The fitness function goes through the population of individual solution and 
scores. 

○ Higher being most fit (better solution)
○ Lower being least fit (worse solution)

● Each scoring algorithm will be different for each problem that is trying to be 
solved with the genetic algorithm.



Background: Fitness Function continued...
Ex: We want to get the string ‘aaaaaa’ we will give 10 points for every correct 
character in the correct location. Using our individuals from before we will score 
them. 

Individuals/Genome:    Calculation: Fitness score:

aabcdb 20/60 .33333
baaaac 40/60 .66667
cbabab 20/60 .33333
abcada 30/60 .50
bacdda 20/60 .33333



Background: Selection
● Selection is randomly selecting 2 parents to participate in Crossover/Mating.

● But each individual solutions chance of being selected may not be equal.

● This is because their chance of being selected is based on their fitness score. 
The higher it is the more likely they will be selected.



Background: Selection continued...
Continuing with our example:

Individuals: Fitness Scores: Chance of being selected:

aabcdb .33333 33.33 %
baaaac .66667 66.67 %

caaaaa .83333 83.33 % ←-----------
abcada .50 50.00 %
bacddd .16667 16.67 %

As you can see the 
individual with the 
highest fitness will 
have the greatest 
chance of being 
selected to pass on 
his solution/DNA



Background: Types of Selection

Accept/Reject:

● This involves normalizing the fitness values between 0-1. This is their cumulative probability. 

● Generate two random number r1 and r2,

r1 being a random individuals fitness. 

r2 will be a random number between 0-1. 

● If r1 >= r2 then that individual will be selected. 
If not then both numbers will be regenerated and compared again.



Background: Crossover/Mutation
Take the two parents we previously selected and mate them.

This involves splitting their DNA/Genome up and then recombing them to create 
two new children which will be added the next generation this is known as 
Crossover.



Background: Crossover continued...

Double Point Crossover:

Parent A: Child One:

Parent B: Child Two:



Background: Mutation
Now that we have created our two children from the previous step Crossover. It is 
time to introduce some added genetic variation (solution variation).

This is done by looping through the individuals genome and changing that specific 
value at that point to another option from the solution space.

● These are our two children Child A: Child B:
○ aabcdb             Before mutation: aabcdb          Before mutation: bacdda

○ bacdda      After mutation: adbcdc       After mutation: dabbda  



Background: Filling Next Generation/Population
Now we take the two children that have been mutated and we begin to populate 
the next population. We fill the entire new population we children generated from 
the previous generation.

To do so we will repeat the selection and Crossover/Mutation steps until the 
population is full.

This generation will be more fit and contain better solutions.



Background: Repeat!
● With the new population now we can repeat these steps.

○ Step 1: Fitness Function
○ Step 2: Selection
○ Step 3: Crossover/Mutation
○ Step 5: Generate Next Generation/population
○ Repeat Steps 1-5

● After each repetition of these steps the population will have increasingly better 
solutions.



Background: Second Chance Mating
Now it’s time to talk about a variation of the genetic algorithm called second 
chance mating.

In second chance mating we will save spots in the new population and fill those 
saved spots with the fittest parents from the Old population.



Second Chance Mating: Continued...
Ex:

● New Population of size 10:
○ {Parent 1, Parent 2, Parent 3, Child 1, Child 2, Child 3, Child 4, Child 5, Child 6, Child 7}

The genetic algorithm will work exactly the same except for saving spots for some 
fit parents. And not creating a population full of children.



Second Chance Mating: Continued...
The reason for doing this is so that way a good solution/genome won’t be 
completely lost and gives the individual a second chance at passing on its 
genome. 



Primary Objective
The primary objective is to analyze the impact of the second chance mating 
approach in genetic algorithms.

Governing Propositions:
● The task will be a simple pathfinding problem.
● Limitation: 120 person-hours over 10 weeks



Simplified Pathfinding Example

Goal

We want our genetic algorithm to find a path 
from the start to the goal.Start



Initialization: Defining Our individuals
We must give our individuals 3 things to start with.

1. Fitness (how good solution is)
2. X and Y coordinates starting at the Start (position on field)
3. Genome (list of directions to travel)



Initialization: Encoding Our Individuals/Solutions
First we must figure out how we 
will encode our genome and 
what is means.

1 = North
2 = East
3 = South
4 = West
5 = North East
6 = South East
7 = South West
8 = North West

(X, Y)

S(3)

N(1)

E(2)W(4)

NE(5)

SE(6)SW(7)

NW(8)



Initialization: Creating Our Genome

1: North = Y+1

2: East = X+1

3: South = Y-1

4: West = X-1

This is how we will know which direction to move.

5: North East = X+1, Y+ 1

6: South East = X+1, Y-1

7: South West = X-1, Y-1

8: North West = X-1, Y+1



Initialization: Defining The Length Of Our Genome
Obviously the directions 1, 2, 3, 4, ...etc wouldn't move us very far. So in order to 
fix this we make our genome length longer for instance a genome length of 170 
would be 170 random integers between 1-8. (our directions)

Ex:

Genome: 623671237612376123456712376821672836481735417...etc

We can store this in an array



Initialization: Creating Our Population
Now that we have our individuals figured out we must make a population of them

This is simple we just repeat creating the individuals a set amount of times.

Ex: A population of 5 individuals with a genome length of 170 would be:

Individual 1: 12567347152347651746576512736417247682175213 etc...
Individual 2: 34856178345813457813541784535781356713542346 etc...
Individual 3: 15175487125745182754715847656754176451751541 etc...
Individual 4: 56756276417534761668765676663763566757633773 etc...
Individual 5: 12563567785235786325634223433678564368785456 etc...



Fitness Scores: Testing Our population

● Now that we have our population it's time to test them and give each 
individual a fitness score.

● In order to do this we must loop through the population and at each individual 
loop through their genome (set of directions)



Fitness Scores: Testing Our population continued...
At the end of each individual's genome (meaning they used all their moves). We 
will calculate the distance between them and the goal.

We can do this using the distance equation:

Where the Red x1 and y1 are the Individuals coordinates.

And the Blue x2 and y2 are the goals coordinates.
Distance = |x1-x2| + |y1-y2|



Calculating the fitness:
● We will have to invert the distance because the shorter the distance to the goal the 

higher their fitness score should be and vice versa.

● We will take the previously calculated distance and take them                         
Fitness = 1 / ((distance*distance) + 1))

● If they reach the goal they will receive a much higher fitness based off how how 
many moves it took them to get there                                                             
Fitness = 100000/((moves*moves))



Selection: Normalization
Now that we have our individuals fitness scores we must use them to select 
parents to partake in Crossover eventually.

In order to do this we must first normalize all of the individuals scores to the 
populations cumulative probability. Which I will demonstrate.



Selection: Normalizing Fitness Scores continued...
First we must loop through our population summing their fitness scores. We will 
call this fitnessSum.

Then we will loop back through the population and correct the fitness scores by 
taking fitnessScore / fitnessSum.

This will force all the fitnessScores to be between 0-1 and the higher the Original 
fitness score the higher probability that individual will be selected.



Selection: Picking our Parents
We need two parents for Crossover.

We will pick them by using a method called Accept / Reject.



Selection: Accept or Reject

To begin we will randomly select an 
individual from the population and 
get their fitness. And then will will 
also generate a random number (r) 
between 0-1. Which is why we 
normalized everything.

If (r < individualsFitness )
Return parent

Else
Repeat

If (r) is less than the individuals fitness score 
then they are selected to mate.

We do this twice for two parents

Parent A, and Parent B



Crossover:
Now that we have our two parents it's time to mate them using Crossover.

This involves taking both the parents genome and combining them to produce two 
new children



Crossover: Double point mutation
Ex: Parent A : Child 1:

141 | 2442 | 343 141 | 2342 | 343

Parent B: Child 2:
124 | 2342 | 341 124 | 2442 | 341

At fixed points within the set genome copy over chunks of each Parent into the 
children in the order above.



Mutation:
Now that we have our children we must mutate them to introduce variation in the 
solutions.

Mutation is performed by looping through each of the children's genome. And at 
each step check to see if a randomly generated number mRate is <= the mutation 
Rate. And if it is then randomly chance that step to something else in the solution 
space.



Mutation: Continued...
Ex: Before Mutation:

Child 1:
1 4 1 2 3 4 2 3 4 3
    

Child 2:
1 2 4 2 4 4 2 3 4 1

Ex: Before Mutation:

Child 1:
1 2 1 2 3 4 3 3 4 3
    

Child 2:
1 2 4 2 1 4 2 3 4 1

As you can see 
where mutation 
took place the 
direction at that 
current step 
changed



Filling the next Generation:
Now that we created and mutated the children it is time to repeat selection and 
Crossover/Mutation until the children that were created are enough to fill a new 
population.

And then repeat! After each generation the populations individual solution should 
get better. Closing in on an optimal solution.



What the optimal path will look like...
Which the genome if perfect 
would look like this…

666666666666666666666...etc

Start
In this simple 

Example this would 
be the optimal 

solution

Goal



Hypothesis
Second chance mating will do better than without for pathfinding.

Why: The more fit individuals DNA from the previous generation is not just 
thrown away. They have a second chance to pass on their DNA.



Goal Tree



Solution Description

Tools: Java, Eclipse IDE, Processing IDE, Personal Computer

Implement a genetic algorithm using second chance mating and evaluate its 
effectiveness when applied to pathfinding.

To do so:
1. Implement second chance mating
2. Remove second chance mating
3. Measure the average fitness of both the algorithms and compare

them.



Experiment Design
● Setup two different genetic algorithms. One with second chance mating and 

the second without second chance mating.

● Get a baseline using the genetic algorithm without second chance mating.

● Then run multiple tests on the second chance mating genetic algorithm each 
test will have a greater amount of individuals carried over from previous 
generation Ex: .05%, 10%, 15%...30%



Block Design



Results



Results continued...



Results continued...



Analysis
Generations to first reach goal:

Shortest path found by algorithm:

Time to complete 1000 generations:



Conclusion
Based on the results of the experiment and statistical analysis. Second chance 
mating performed worse in number of generations to first reach the goal, shortest 
path found by the algorithm, and time taken to complete 1000 generations.

● Second Chance mating did not perform better than the genetic algorithm 
without second chance mating.



Future Work
● Experiment with carryover values less than 5% in second chance mating 

genetic algorithm
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End
Any Questions?



Extra



Extra Continued...



Extras Continued...



Extras Continued...



Extras Continued...



Extras Continued...



Extras Continued...



Extras Continued...
Showing the shortest path found...


